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This document describes the method used to simulate cycling speeds and finish times for the 
Transcontinental  Race  (TCR).  The  results  of  these  simulations  is  reported  online: 
http://www.murray-white.net/ultra/speed.html.  

There  are  five  forces  that  resist  a  cyclist's  forward  motion:  air  resistance,  tyre  rolling 
resistance, mechanical resistance in the drivetrain and hubs, gravitational resistance during 
uphills, and braking forces. The two forces that propel a cyclist forwards are the power that 
the rider exerts through the pedals and the gravitational force experienced on downhills. A 
tailwind can occasionally move a cyclist forward, but at most riding speeds tailwinds are only 
strong enough to reduce the negative affect of air resistance rather than creating a positive 
force.

How these factors determine cycling speeds using relatively simple equations is already well-
established, and several websites have interfaces where these equations are used to predict 
cycling  speeds  based  on  user-controllable  input  variables  (e.g., 
http://www.gribble.org/cycling/power_v_speed.html). My model goes beyond most others by 
reading altitude and distance data for an entire route and predicting the average speed for a 
rider with a given power profile and many other manipulable variables.

I describe below the equations used by the model to predict cycling speeds, I then describe 
what information was extracted from a complete route and how average speeds and total 
riding  times  were  computed.  I  finish  by  explaining  what  additional  equations  and 
assumptions were used to allow the model to incorporate the more subtle effects like how 
elevation and wind are expected to affect the predicted speeds.

Forces Acting on a Cyclist

The  force  exerted  by  air  resistance,  also  called  aerodynamic  drag  (denoted  as  Fair and 
measured in N) is a particularly important factor. It increases based on air density (ρ, or rho, 
measured in kg/m3), which is explained more below in the section on the effects of elevation. 
It also increases based on the frontal surface area of the cyclist, bicycle, and all equipment (A, 
measured in m2), and the drag coefficient (Cd, which has no units), which is a measure of how 
aerodynamic something’s shape is (e.g., brick-shaped vs. wing-shaped). The surface area and 
drag coefficient are often treated as one measure that is written as CdA. Values used for this 
variable are shown in Table 1 below; the effects of manipulating this are included in the 
online results. Finally,  the force of air resistance increases with the square of the cyclist’s 
speed into the wind (aka airspeed, va, measured in m/s). The exact equation is:

Fair = 0.5 · Cd · A · ρ · va
2 (1)

http://www.gribble.org/cycling/power_v_speed.html
http://www.murray-white.net/ultra/speed.html


Note  that  windspeed  is  used  in  Equation  1  instead  of  groundspeed.  The  assumptions 
concerning how windspeed sometimes differs from groundspeed are discussed in the section 
on the Effects of Wind below.

The force exerted by tyre/tire rolling resistance (Froll, measured in N) increases based on the 
total mass of the cyclist, bike, and equipment (m, measured in kg) and the rolling resistance 
coefficient of the tires used (Crr, which has no units). The default value for the total mass was 
85 kg;  the effects  of  manipulating  this  are  included in the online results.  Values  for the 
coefficient  of  rolling  resistance  were  based  on  those  given  at 
http://  www.bicyclerollingresistance.com  ; the effects of manipulating this are also included in 
the online results. The gravitational constant (g = 9.8067 m/s2) is also needed to transform 
mass into weight. It is actually the normal weight which is needed, which is the force exerted 
perpendicular to  the  road  surface,  which  varies  based  on  the  gradient  of  the  road  (G, 
measured as % of height gained for a certain distance ridden), which is the reason for the 
trigonometry in the following equation: 

Froll = Crr · cos[ arctan( G / 100 ) ] · m · g (2)

The force exerted by gravity (Fgrav, measured in N) obviously increases based on the total 
mass and the gradient of the road. The specific gradient values used in the modeling are 
shown in Table 1, which are based on the mean observed values in each range for each route. 
Again, the gravitational constant is needed to convert mass to weight:

Fgrav = sin[ arctan( G / 100 ) ] · m · g (3)

These three measures of force need to be converted to measures of power (Pair, Proll, and Pgrav, 
each measured in W). Power is the total work done to overcome a force during one second.  
The distance covered in one second is given by the groundspeed (vg, measured in m/s), which 
is hereafter referred to more simply as speed. Force is therefore converted to power using the 
following equations:

Pair = Fair · vg (4)

Proll = Froll · vg (5)

Pgrav = Fgrav · vg (6)

The total resisting power (Presist, measured in W) is simply the sum of these three:

Presist = Pair + Proll + Pgrav (7)

To continue moving at a constant speed, the power exerted by the wheels must equal the 
resisting power, so:

Pwheel = Presist (8)

Unfortunately, not all of the power put into the pedals by the cyclist (Plegs, measured in W) 
reaches the wheel due to mechanical resistance and drivetrain losses (Ldt, measured in %). 

http://www.gribble.org/cycling/power_v_speed.html
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Exactly what  is included in drivetrain losses is described more below, and the effects  of 
manipulating this are included in the online results. Therefore, the power exerted by the legs 
and power transmitted by the wheels are related using the following equation:

 Pwheel = Plegs · [ 1 – (Ldt / 100) ] (9)

The power lost to mechanical resistance and drivetrain losses (Pmech, measured in W) can then 
be computed as:

Pmech = Plegs – Pwheel (10)

The power exerted by the legs is assumed to vary based on the gradient of the road. Two 
arrays  of  values  were  used,  one  estimated  for  an  average-strength  TCR  rider  and  one 
estimated for a strong TCR rider, which are shown in Table 1.

Table 1: Air resistance, power, and braking values for each type of simulated rider at each 
gradient range.

Gradient 
Range

Gradient 
Values Used,

G, 2015 Route

Gradient 
Values Used,

G, 2016 Route
CdA (m²)

Plegs (W), 
Average rider

Plegs (W), 
Strong rider

Braking 
(%)

< -7% -8.9% -9.1% 0.37 0 0 50

-7% → -4% -5.3% -5.3% 0.37 0 40 25

-4% → -1% -2.1% -2.3% 0.37 40 80 0

-1% → 1% 0.0% 0.0% 0.4 130 170 -

1% → 4% 2.1% 2.2% 0.43 160 200 -

4% → 7% 5.3% 5.3% 0.43 180 220 -

> 7% 9.0% 9.0% 0.43 200 240 -

The equations above are presented as if speed is a known variable and forces and power 
values are determined based on this and the other variables. In fact, the power generated by 
the cyclist was treated as the known variable, and then the speed that would result from this 
was then computed.  Because the power of air  resistance increases as a  cubic function of 
speed, a cubic equation must be solved. This was done using an iterative method of trying an 
approximate value for speed and then adjusting the value based on the direction of the error  
until the error fell below a predefined threshold.

Many people intuitively expect that even though more power tends to be exerted on steeper 
climbs  than  on gentler  climbs  or  flat  sections,  this  difference  may diminish  when doing 
longer climbs. I spent some time looking for such a difference in observed data, but I found 
almost no evidence for it regardless of the definition of a "longer" climb. Any difference that 
does exist seems to be overshadowed by the noise in the data, so either there is no such effect 
or it is so small that ignoring it won't significantly reduce the accuracy of the model, so I have 
not included this complication.



Braking Adjustment

This simple model does a very good job of predicting observed speeds based on observed 
power on flat sections and on climbs, with most differences being less than 0.5 km/h when 
using reasonably long routes. Unfortunately,  average speeds on descents are predicted less 
well due to the observed speeds tending to be lower than those that are predicted. This is 
partly because corners require the brakes to be used and also because the model assumes that  
a "terminal velocity" is achieved instantaneously for each gradient range. Such a velocity will 
be reached far more quickly on climbs and flat sections than during descents, when more time 
is needed to accelerate up to such speeds, so the lack of accuracy in these conditions is not 
surprising. 

The simplest way to make the model predict more realistic speeds during descents is to apply 
a braking factor that removes a certain percentage of the force being applied by gravity on the 
descents.  This method causes the effect of braking to be somewhat overestimated, but the 
only  alternative  would  be  to  develop  a  completely  different  modeling  approach  that 
incorporates principles of Newtonian physics, momentum, and acceleration. The predictive 
accuracy and efficacy of such a model would probably not be much higher than is the case 
when using the more basic approach described here. 

The braking-adjusted force exerted by gravity (F’grav, measured in N)  is simply the regular 
force exerted by gravity reduced by the braking value (B, measured in %):

F’grav = Fgrav · [ 1 – (B / 100) ] (11)

F’grav is  then  used  in  Equation  6  instead  of  Fgrav.  The  resisting  force  of  braking  (Fbrake, 
measured in N) can be computed as:

Fbrake = Fgrav – F’grav (12)

Values of 50% braking for steep descents, 25% braking for moderate descents, and 0% for 
gentle descents are used because they provide a reasonable fit to a variety of observed data. 
These  values  are  kept  constant  for  all  simulations.  This  is  not  a  real  reflection  of  the 
importance of braking in the real-world, so braking forces are not discussed in the results.

Mechanical Resistance

There are two components of mechanical resistance that slow down a cyclist. The first is the 
wheel  hubs.  In  most  models,  this  is  combined  or  measured  together  with  tire  rolling 
resistance, but here it is treated separately so that the effect of using a dynamo hub can be 
investigated. Separate coefficients of hub resistance for the front and rear hubs (Chrf and Chrr, 
respectively, which have no units) are combined with the speed to compute the power lost 
due to hub resistance (Phubs, measured in W):  

Phubs = ( Chrf + Chrr ) · vg (13)

The coefficient of hub resistance for a hub with standard steel bearings is assumed to be 
0.00008 (which is used by default for the rear hub) and for ceramic bearings this is halved, so 



0.00004; the effect of manipulating which types of hubs are used is included in the online 
results. 

When a good-quality dynamo hub is used, the coefficient of hub resistance for the front hub 
is determined by the percentage of time that the hub is in use to power devices (D, measured 
in %). When a dynamo hub is not being used to power any lights or devices, the coefficient of 
hub resistance is 0.0002 (Cdoff, which has no units) and when it is powering something then it 
is 0.001 (Cdon, which has no units). Published values for resistance caused by dynamo hubs is 
typically  given  as  a  graph  showing  watts  consumed  across  a  range  of  speeds.  These 
coefficients were chosen so that the values shown in those graphs would be approximately 
replicated. The default condition is that the bicycle is equipped with a dynamo hub which is 
in use 25% of the time. The effect of manipulating whether a dynamo hub was used and what 
percentage of time is included in the online results. 

Chrf = ( D / 100) · Cdon + ( [100 – D] / 100) · Cdoff (14)

Equation 7, which computes the total resisting power, is therefore updated to also include hub 
resistance:

Presist = Pair + Proll + Pgrav + Phubs (7b)

The rest of the mechanical resistance comes from the drivetrain. Above, these losses were 
summarized as the factor  Ldt in Equation 9. The drivetrain losses are assumed to consist of 
losses caused by the pedals, bottom bracket, chain, and derailleur pulleys (Lp, Lbb, Lc, and Ldp, 
respectively, measured in %):

Ldt = Lp + Lbb + Lc + Ldp (15)

Research published by Friction Facts (https://www.friction-facts.com/) was used to determine 
the rough values for these variables. Lp was fixed at 0.1% for all pedals. Lbb can be 0.2% for a 
high-quality bottom bracket or 0.5% for a standard-quality model; 0.5% is the default value. 
Lc is 3% for a regular chain, but an extra 1% is added for an old chain and 1% for a dry chain 
with no oil; 3% is the default value. Ldp is 0.5%, 1.0%, 1.5%, or 2.0% depending on whether 
oversized  pulleys  with  ceramic  bearings  are  used,  standard-sized  pulleys  with  ceramic 
bearings, standard-sized pulleys with steel bearings, or standard-sized pulleys with bushings 
are used, respectively;  1.5% is the default value.  The default  value of the total  drivetrain 
losses, Ldt, is therefore 5.1%. The effect of manipulating each of these components is included 
in the online results.

Route Data

Route data for the 2015 and 2016 Transcontinental Races were entered into the model. The 
routes  were  divided  into  segments  that  were  about  500  to  1000  km  long,  generally 
corresponding to where checkpoints were located or where major geographic borders were 
crossed. 



Table 2: Data for each segment of the 2016 Transcontinental Race route based on each gradient range.

Gradient 
Range

Start – Puy de Dôme Puy de Dôme – Interlaken Interlaken – Slovenia Slovenia – Montenegro Montenegro – Finish Totals

Dist’ 
(km)

Mean 
Elev’ 
(m)

Pred’d 
Speed 
(km/h)

Dist’ 
(km)

Mean 
Elev 
(m)

Pred’d 
Speed 
(km/h)

Dist’ 
(km)

Mean 
Elev 
(m)

Pred’d 
Speed 
(km/h)

Dist’ 
(km)

Mean 
Elev 
(m)

Pred’d 
Speed 
(km/h)

Dist’ 
(km)

Mean 
Elev 
(m)

Pred’d 
Speed 
(km/h)

Dist’ 
(km)

Mean 
Elev 
(m)

Pred’d 
Speed 
(km/h)

< -7% 9 449 41.7 17 554 41.9 102 1375 43.3 67 744 42.2 36 875 42.4 232 1013 42.6

-7% → -4% 34 309 38.7 37 517 39.0 68 1236 40.2 69 652 39.2 51 582 39.1 259 727 39.3

-4% → -1% 157 206 31.8 108 464 32.1 133 1036 32.6 174 606 32.2 222 424 32.0 793 529 32.1

-1% → 1% 302 200 26.0 182 444 26.0 144 966 26.0 235 560 26.0 501 264 26.0 1364 399 26.0

1% → 4% 169 214 18.6 113 478 18.5 118 1060 18.2 166 612 18.4 197 420 18.6 763 523 18.5

4% → 7% 31 343 11.9 36 524 11.8 66 1272 11.3 72 717 11.7 52 654 11.8 257 775 11.7

> 7% 11 449 8.4 18 552 8.4 103 1344 7.9 71 769 8.3 30 865 8.2 232 1008 8.1

Total / Avg 713 233 23.3 511 480 22.2 732 1193 18.8 854 645 20.6 1089 455 23.2 3899 598 21.55

Note: Dist’ = distance, Elev’ = elevation, Pred’d = predicted



The average elevation in every 200-metre-long piece of the route segment was compared to that 
of the previous such piece; this was then compared to the distance between those two pieces to 
obtain the gradient for that 200-metre long piece of route.  The total  distance covered by all 
pieces in each segment of the route that fell within each of seven ranges of gradients was then 
obtained. The mean elevation of the pieces contained in each gradient range in each segment was 
also computed. These values are shown in Table 2 for the 2016 route along with the predicted 
speeds.

The elevation data was sometimes erratic and unreliable (e.g., when the road passes through a 
tunnel) and so any observed gradients for a piece of route above 15% or below -15% were not 
included when computing the mean observed gradients within each range (shown in the second 
and  third  columns  of  Table  1).  These  pieces  of  route  were  included  in  the  total  distances 
recorded for each gradient range.

Effects of Elevation

As mentioned above, the mean elevation for each gradient range for each route segment was 
used in the model.  Elevation has three separate  effects  on riding speeds  due to atmospheric 
factors. Most people know that temperature decreases as altitude/elevation increases, the rate is 
typically 0.65ºC for every 100 metres gained. The first effect this has on cycling speeds is that 
tires have more rolling resistance when the temperature is lower, increasing by 1.4% for every 
1ºC lost,  so  rolling  resistance  increases  by  about  1% for  every  100 metres  gained,  causing 
cyclists to move slower for the same amount of power exerted. The air is not only cooler at 
higher elevations, it is also significantly less dense, the difference in density being about 0.8% 
for every 100 metres gained, which causes cyclists to move faster for the same amount of power 
exerted. Finally, there is also less oxygen available as the elevation increases, which reduces the 
power that a cyclist can exert, with about 0.7% power lost for every 100 metres according to the 
formulas given by Bassett et al. (1999). How each of these effects was incorporated into the 
model is described below.

Air  density  is  measured  by rho  (ρ,  measured  in  kg/m3),  and  is  an  important  component  of 
Equation 1, the force exerted by air resistance. It is computed using the following equations:

Because the TCR is held in the middle of summer and people ride mostly during daylight hours, 
the temperature at sea level (T0, measured in K)  is assumed to be a constant 298.15 (which is 
25ºC).  The  temperature (T,  measured  in  K) at  the  current  elevation  (h,  measured  in  m)  is 
computed based on the temperature at sea level and the rate that temperature decreases with 
elevation, L (= 0.0065 K / m).

T = T0 – L · h (16)

The atmospheric pressure at sea level is assumed to be constant and the standard value is used (p0 

= 101.325 kPa).  The pressure (p, measured in kPa) at the current elevation is then computed 



based on the pressure at sea level, an adjustment for elevation, the gravitational constant g, the 
molar mass of dry air (M = 0.02896 kg / mol), the ideal universal gas constant (RU = 8.315 J / 
[mol · K] ), and L.

p = p0 · [ 1 – (L · h / T0) ] (g · M) / (R
U

 · L) (17)

The air density (ρ) can then be computed based on the temperature and pressure at the current 
altitude plus molar mass and the specific gas constant (RS = 287.058 J / [kg · K] ).

ρ = p  / ( RS · T ) (18)

This is the air pressure value that is used in Equation 1. 

Coefficients of rolling resistance for tires are typically published assuming a temperature of 20ºC 
(Trr = 293.15 K). Rolling resistance is known to vary according to air temperature; Tom Anhalt 
(http://bikeblather.blogspot.ch/) has estimated the rate of decrease of Crr to be 1.36% per degree 
Celsius  (i.e.,  F =  0.0136).  The  temperature-adjusted  rolling  resistance  coefficient  (C'rr)  is 
therefore used in Equation 2 instead of the basic value, which is computed as follows:

C'rr = Crr · ( 1 + F · [T – Trr] ) (19)

Air contains less oxygen at higher elevations, which causes the maximum power that can be 
sustained to be reduced.  Bassett et al. (1999) measured these effects with trained athletes and 
gave the following cubic equation as the best-fitting function to explain how available power is 
reduced based on current elevation (h, this time measured in km):

P’legs = Plegs · ( 0.1783 · h3 – 1.43 · h2 – 4.07 · h + 100 ) / 100 (20)

This  elevation-adjusted  power  value  was  used  in  Equations  9  and  10 instead  of  the  power 
attainable at sea level. How predicted speeds differ at different altitudes based on these three 
adjustments is covered in the online results.

Effects of Wind

Average wind speeds at ground level in most of Europe tend to be relatively low (e.g., see here: 
https://deepresource.wordpress.com/2014/12/04/european-wind-potential/),  except  for  the 
regions surrounding the North Sea and on the Atlantic coast. Based on this data, I make the 
rough approximation that the average wind speed during the TCR is 10 km/h. Because the effect 
of wind is non-linear, I actually implement this by imposing winds for an equal amount of time 
at 0, 5, 10, 15, and 20 km/h and averaging across these scenarios. I found no solid evidence 
showing a consistent trend in the wind direction across Europe in the summer, so I assume that 
the wind is equally likely to come from any direction, and so take the average across all winds at 
15 degree increments. 

https://deepresource.wordpress.com/2014/12/04/european-wind-potential/


Figure 1 shows predicted speeds for a cyclist on a flat road who averages 150 watts and has a 
constant CdA of 0.4 when experiencing varying wind speeds (shown by lines of different colors) 
and from various angles (shown on the  x-axis). Some people may initially assume that if the 
wind  is  equally  likely  to  be  a  headwind,  tailwind,  or  perfect  crosswind  then  this  will  be 
effectively the same as there being no wind. However, even a perfect crosswind at a 90° angle 
causes more air resistance than what exists when there is no wind, as shown by the four lines for 
non-zero winds being lower than that for zero wind (the blue line) in Figure 1. As a specific 
example, a perfect 90-degree crosswind of 20 km/h will slow down the hypothetical cyclist by 
more than 4 km/h (from 28 km/h to 23.6 km/h). This is because the cyclist effectively travels  
further through the wind in this situation than they do along the ground, see Jobst Brandt's full 
explanation: http://www.sheldonbrown.com/brandt/wind.html.

Figure 1: Predicted (ground) speeds for different wind angles and wind speeds on a flat road and 
given a constant power of 150 watts and a constant CdA of 0.4.

A further complication is that the rider and bike tend to be aerodynamically optimized for going 
into  a  pure  headwind.  When  there  is  any  crosswind,  the  rider  and  bike  tend  to  be  less 
aerodynamic  than  in  a  pure  headwind (the  exception  being that  some wheel  rims  are  more 
aerodynamic in certain crosswinds). The  CdA data estimated by Osman Isvan (http://www.jsc-
journal.com/ojs/index.php?journal=JSC&page=article&op=view&path[]=168)  was  used  as  a 
basis for the correction of adding 0.03 to the CdA value when the apparent wind angle (aka yaw) 

http://www.jsc-journal.com/ojs/index.php?journal=JSC&page=article&op=view&path[]=168
http://www.jsc-journal.com/ojs/index.php?journal=JSC&page=article&op=view&path[]=168
http://www.sheldonbrown.com/brandt/wind.html


that the cyclist experiences is 15 to 25 degrees, and 0.05 when the apparent wind angle is greater 
than 25 degrees. 

The following equation was used to compute air speed based on the ground speed, wind speed 
(vw, measured in m/s) and wind angle (α, measured in radians):

va = √[ ( vg + vw · cos(α) )² + ( vw · sin(α) )² ] (21)

The apparent wind angle, or yaw (β, measured in radians) was computed as follows:

β = acos[ ( vg + vw · cos(α) ) / va ] (22)

As mentioned above, airspeed was used when calculating the force of air resistance:

Fair = 0.5 · Cd · A · ρ · va
2 (1)

But to convert this into power, ground speed is needed in addition to the apparent wind angle:

Pair = Fair · vg · cos(β) (23)


